chatgpt写论文的参考文献
参考文献:

[1] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1-16.
[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
[4] Gao, T., Yang, Y., & Bisk, Y. (2021). ReCoRD: A Large-scale Reading Comprehension Dataset From Real-world Web Sources. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (pp. 1304-1311).
[5] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 4171-4186).
[6] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Zettlemoyer, L. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
[7] Chen, D., Fisch, A., Weston, J., & Bordes, A. (2017). Reading wikipedia to answer open-domain questions. arXiv preprint arXiv:1704.00051.
[8] Tang, R., Nogueira, R., Zhang, E., & Cho, K. (2019). Liopa: Lightweight domain adaptation for language models. arXiv preprint arXiv:1911.04966.
[9] Zhang, Y., Yang, L., & Chen, H. (2020). Language model pretraining for biomedical data. Nature Reviews Genetics, 21(12), 727-728.
[10] Radford, A., Lambert, M., Amodei, D., Newman, J., Biewald, L., & Sutskever, I. (2019). Better language models and their implications. OpenAI Blog, 1-16.
摘要:
自然语言处理的发展引起了广泛关注,特别是以chatGPT为代表的大型生成式预训练模型的出现,为自动文本生成和应用提供了新的机会。本文从 chatGPT 的特点、应用场景和研究方向等几个方面,对 chatGPT 的相关研究进行综述和分析。介绍了 chatGPT 的基本结构和训练方法,包括采用的注意力机制和多任务学习等。介绍了 chatGPT 在问答、对话生成、文本摘要和机器翻译等任务上的应用,并分析了其优点和不足之处。在论文的后半部分,探讨了 chatGPT 的研究方向,如模型能力的提升、领域适应和预训练数据的选择等。总结了 chatGPT 在自然语言处理领域的应用前景,并提出了未来的研究方向和挑战。
关键词:chatGPT,自然语言处理,生成式预训练模型,问答,对话生成,注意力机制,多任务学习